Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Earlier snowmelt, warmer temperatures and herbivory are among the factors that influence high-latitude tundra productivity near the town of Utqiaġvik in northern Alaska. However, our understanding of the potential interactions between these factors is limited. MODIS observations provide cover fractions of vegetation, snow, standing water, and soil, and fractional absorption of photosynthetically active radiation by canopy chlorophyll (fAPARchl) per pixel. Here, we evaluated a recent time-period (2001–2014) that the tundra experienced large interannual variability in vegetation productivity metrics (i.e. fAPARchland APARchl), which was explainable by both abiotic and biotic factors. We found earlier snowmelt to increase soil and vegetation cover, and productivity in June, while warmer temperatures significantly increased monthly productivity. However, abiotic factors failed to explain stark decreases in productivity during August of 2008, which coincided with a severe lemming outbreak. MODIS observations found this tundra ecosystem to completely recover two years later, resulting in elevated productivity. This study highlights the potential roles of both climate and herbivory in modulating the interannual variability of remotely retrieved plant productivity metrics in Arctic coastal tundra ecosystems.more » « less
-
Abstract Cover crops have long been seen as an effective management practice to increase soil organic carbon (SOC) and reduce nitrogen (N) leaching. However, there are large uncertainties in quantifying these ecosystem services using either observation (e.g. field measurement, remote sensing data) or process-based modeling. In this study, we developed and implemented a model–data fusion (MDF) framework to improve the quantification of cover crop benefits in SOC accrual and N retention in central Illinois by integrating process-based modeling and remotely-sensed observations. Specifically, we first constrained and validated the process-based agroecosystem model,ecosys, using observations of cover crop aboveground biomass derived from satellite-based spectral signals, which is highly consistent with field measurements. Then, we compared the simulated cover crop benefits in SOC accrual and N leaching reduction with and without the constraints of remotely-sensed cover crop aboveground biomass. When benchmarked with remote sensing-based observations, the constrained simulations all show significant improvements in quantifying cover crop aboveground biomass C compared with the unconstrained ones, withR2increasing from 0.60 to 0.87, and root mean square error (RMSE) and absolute bias decreasing by 64% and 97%, respectively. On all study sites, the constrained simulations of aboveground biomass C and N at termination are 29% and 35% lower than the unconstrained ones on average. Correspondingly, the averages of simulated SOC accrual and N retention net benefits are 31% and 23% lower than the unconstrained simulations, respectively. Our results show that the MDF framework with remotely-sensed biomass constraints effectively reduced the uncertainties in cover crop biomass simulations, which further constrained the quantification of cover crop-induced ecosystem services in increasing SOC and reducing N leaching.more » « less
An official website of the United States government
